Fuel Cell Separator and Fuel Cell Stack and Reactant Gas Control Method Thereof

By September 11, 2018 2   min read  (273 words)

September 11, 2018 |


A fuel cell separator, a fuel cell stack having the fuel cell separator, and a reactant gas control method of the fuel cell stack are provided. That is, even when the fuel cell stack operates under the low load operation condition, a reactant gas is supplied to the reactant gas passages of the fuel cell separator, and thus, the length of the passage can be shortened by 50% as compared with the prior art having only one reactant gas passage. Therefore, the reactant gas can be effectively supplied without experiencing pressure loss. Further, in the high load operation of the fuel cell stack, the reactant gas is introduced into the first reactant gas passage of the fuel cell separator and utilized in half of the whole electrode area. Subsequently, the reactant gas is introduced into the second reactant gas passage and utilized in the remaining half of the electrode area. The flow rate of the reactant gas flowing along the passage channels is increased by two times, even when the reactant gas utilizing rate is identical as compared with the reactant gas flow in the low load operation. As a result, the moisture existing in the passage channels can be more effectively discharged and the flooding phenomenon occurring in the high load operation can be prevented. By controlling the reactant gas supply in accordance with an operation condition of the fuel cell stack without experiencing pressure loss and deterioration of the utilizing rate, the flooding phenomenon and concentration polarization phenomenon that occur in the fuel cell stack can be prevented.

Read the most up to date Fuel Cell and Hydrogen Industry news at FuelCellsWorks

Advanced Arts

Author Advanced Arts

More posts by Advanced Arts
error: Alert: Content is protected !!